INSTRUCTIONS:

(1) There are **three** parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do **three** problems from each part.

(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do **three** of the following five problems. Assume that *measurable* means Lebesgue measurable, unless otherwise stated. We denote the Lebesgue measure by m or dx.

- (1) Show that if *E* is a measurable subset of [0, 1] and m(E) is strictly positive then there exist $x, y \in E$ such that x y is irrational.
- (2) The *Bounded Convergence Theorem* is as follows. If f_n is a sequence of measurable functions on a measurable set $E \subset \mathbb{R}^d$ with $m(E) < \infty$ such that $f_n \to f$ pointwise almost everywhere on E and $|f_n| \leq M$ on E then

$$\int_E f_n dx \to \int_E f dx.$$

- (a) Using Egorov's Theorem, prove the Bounded Convergence Theorem.
- (b) Show that the statement of the Bounded Convergence Theorem is false in general if the hypothesis $m(E) < \infty$ is removed.
- (3) Suppose *f* is real-valued and integrable with respect to the Lebesgue measure *m* on \mathbb{R} . Suppose that there are real numbers *A* < *B* such that

$$A m(U) \le \int_U f dx \le B m(U)$$
, for all open sets $U \subseteq \mathbb{R}$.

Show that $A \le f(x) \le B$ for almost every *x*.

- (4) Suppose that $f_n \in L^1([0,1], dx)$ converges pointwise almost everywhere to $f \in L^1([0,1], dx)$. Show that f_n converges to f in $L^1([0,1], dx)$ if and only if $||f_n||_{L^1} \to ||f||_{L^1}$.
- (5) Let *X* be a nonempty set.
 - (a) Define what it means for a map μ_* , from the collection of all subsets of X to $[0, \infty]$, to be an *exterior measure*. (This is also known as an *outer measure*).
 - (b) Define what it means for a collection \mathcal{M} of subsets of X to be a σ -algebra.

We say that a subset $E \subseteq X$ is *Carathéodory measurable* if, for every $A \subseteq X$,

$$\mu_*(A) = \mu_*(A \cap E) + \mu_*(A \cap E^c).$$

It is a fact that the set \mathcal{M} of Carathéodory measurable subsets of X is a σ -algebra (you do not need to prove this).

(c) Show that the exterior measure μ_* is a measure when restricted to the collection \mathcal{M} of Carathéodory measurable sets.

Part II. Functional Analysis

Do three of the following five problems.

(1) Let $f \in L^1([0,1], dx)$ but $f \notin L^2([0,1], dx)$. (a) Show that the set

$$S = \{ \phi \in C[0,1] : \int_0^1 \phi(x) f(x) dx = 0 \}$$

is a dense subspace of $L^2([0,1])$.

- (b) Use this density result to show that there exists an orthonormal basis $\{\phi_n\}$ of $L^2([0,1], dx)$ so that $\int_0^1 f \phi_n = 0$ for all *n* (use density to show that there exists a complete orthonormal basis ϕ_n of $L^2([0,1])$ such that $\phi_n \in S$.)
- (2) For $f \in L^2([0,1], dx)$, define the two operators,

$$Sf(x) = \int_0^x f(y) \, dy, \ Tf(x) = \frac{1}{x} \int_0^x f(y) \, dy.$$

Show that

- (a) *S* is a bounded operator on $L^2([0, 1])$.
- (b) $S : L^{2}([0,1]) \to L^{2}([0,1])$ is a compact operator.
- (c) $T: L^2([0,1]) \rightarrow L^2([0,1])$ is not a compact operator.

(d) Show that *T* is a bounded operator on $L^2([0,1])$. (Hint: Assume $f \in C([0,1])$ and write out the integral for $||Tf||^2$. Integrate by parts and apply the Cauchy-Schwarz inequality).

- (3) Define the Schwartz space $S(\mathbb{R})$. Use the Fourier transform (or another method) to show that there exists $f \in S(\mathbb{R})$ such that $\int_{\mathbb{R}} |f(x)|^2 dx = 1$ but $\int_{\mathbb{R}} x^k f(x) dx = 0$ for every *k*.
- (4) Do the following two problems on $L^{p}([0,1], dx)$. If true, prove it. If false, exhibit a counter-example.
 - (a) True or False: If $f \in L^p([0,1], dx)$ for all p, then $f \in L^{\infty}([0,1], dx)$.
 - (b) True or False: Let $f \in L^{\infty}([0,1], dx)$. Then $\lim_{p\to\infty} ||f||_{L^{p}([0,1])} = ||f||_{L^{\infty}([0,1])}$.
- (5) Let X and Y be Banach spaces and let $T : X \to Y$ be an injective bounded linear operator. Let Dom(T) be the domain of T and let Ran(T) be the range of T. Call an operator closed if its graph is closed in $X \times Y$. Show that:
 - (a) If Ran(T) is closed, then T^{-1} : Ran(T) \rightarrow X is a closed operator and $D(T^{-1}) =$ Ran(T).
 - (b) T^{-1} : Ran(T) \rightarrow X is bounded if and only if Ran(T) is closed in Y.

Part III. Complex Analysis

Do three of the following five problems.

(1) Let $\gamma(t) = 2 + e^{2\pi i t}$ for $t \in [0, 1]$. For each integer *n*, evaluate:

$$\int_{\gamma} \left(\frac{z}{z-2}\right)^n dz$$

- (2) Let *f* be analytic on an open set containing $\{|z| \le 1\}$, and suppose that |f(z)| < 1 for all |z| = 1. Show there is a unique point z_0 with $|z_0| < 1$ and $f(z_0) = z_0$.
- (3) Suppose *U* is a simply connected region in \mathbb{C} and *f* is analytic.

(a) Give an example of *U* and *f* such that f(U) is not simply-connected.

(b) If $f(z) \neq 0$ for all $z \in U$, show that the winding number of $f \circ \gamma$ around 0 is 0 for all closed curves γ in U.

- (4) (a) Give an example of a power series in *z* with radius of convergence 1 that does *not* converge for all |*z*| ≤ 1.
 - (b) Prove that the series

$$\sum_{n} \frac{z^{n}}{n^{2}}$$

has radius of convergence 1 and defines a continuous function on $|z| \leq 1$.

(5) Suppose {*f_n*} is a uniformly bounded sequence of analytic functions on the unit disk D, converging pointwise to a function *f*. Prove that the convergence is uniform on compact subsets of D and the function *f* is analytic.